December 19, 2013

SLAC Research Makes Science Magazine's Top 10 of 2013

Editors of the journal Science, published by the American Association for the Advancement of Science, have selected their annual Top 10 Science Breakthroughs of the Year. On the list: Work by SLAC researchers pinning down the origin of cosmic rays.

Editors of the journal Science have selected their annual Top 10 Science Breakthroughs of the Year. On the list: Work by SLAC and Stanford researchers pinning down the origin of cosmic rays.

In the 101 years since cosmic rays were discovered, the nature of these extremely energetic particles – mostly protons – has been established, but not where and how they gain their immense energies. Astrophysicists suspected they come from the remnants of supernovae, the violent deaths of massive stars many times the size of the sun. But cosmic ray particles have electromagnetic charges, which means they get yanked back and forth by the magnetic fields of any stars they whiz past. Tracing them directly back to their point of origin has been impossible.

In February, researchers led by Stefan Funk of the SLAC/Stanford Kavli Institute for Particle Astrophysics and Cosmology announced they'd taken a different tack. Using data from the Fermi Gamma-ray Space Telescope, they traced the paths of certain gamma rays, which are neutral and thus not deflected by magnetic fields, back to their origins in dense gas clouds near a particular supernova remnant. The gamma rays were of very specific energies and could only have come, in a stepwise fashion, from cosmic ray protons, thus confirming the origin of galactic cosmic rays.


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.

Image - Artist's illustration of a supernova, with a shockwave spreading out from it.
When stars explode, the supernovas send off shock waves like the one shown in this artist's rendition, which accelerate protons to cosmic-ray energies through a process known as Fermi acceleration. (Credit: Greg Stewart/SLAC National Accelerator Laboratory)
Dig Deeper

Related stories

Press Release

Using the largest digital camera in the world, Rubin Observatory will soon be ready to capture more data than any other observatory in history.

A person in a hard hat looks at a giant black lens cap surrounded by a mirror.
News Feature

Researchers positioned lasers to compress billions of electrons together, creating a beam five times more powerful than before.

Claudio Emma and Brendan O’Shea examine experimental apparatus.
News Brief

As a member of a collaborative team led by General Atomics, SLAC will help bridge basic research programs with the growing fusion industry. 

Graphic representation of lasers hitting a fusion fuel target in a fusion target chamber
Press Release

Using the largest digital camera in the world, Rubin Observatory will soon be ready to capture more data than any other observatory in history.

A person in a hard hat looks at a giant black lens cap surrounded by a mirror.
News Feature

Researchers positioned lasers to compress billions of electrons together, creating a beam five times more powerful than before.

Claudio Emma and Brendan O’Shea examine experimental apparatus.
News Brief

As a member of a collaborative team led by General Atomics, SLAC will help bridge basic research programs with the growing fusion industry. 

Graphic representation of lasers hitting a fusion fuel target in a fusion target chamber
News Brief

This is the first measurement of its kind and will enable researchers to evaluate electron dynamics in a new range of super-small particles,  valued ...

Graphic depiction of light exciting electrons on a sub-nanometer particle
News Brief

Scientists studying laser-plasma proton acceleration made an unexpected breakthrough, simultaneously resolving multiple long-standing problems although they had only aimed to address one. 

Graphic depiction of a laser beam going through a water target
News Brief

Rubin Observatory’s rapid scanning of the night sky will capture the largest sample of Type Ia supernovae yet, unlocking new insights into dark energy.

An illustration of a telescope scanning the night sky.